
Makalah II4031 Kriptografi dan Koding, Semester II Tahun 2023/2024

Analysis and Simulation of Digital Identity Protection

Using Blockchain-based Database, ECIES, EdDSA, and Keccak Implementations as

Alternative Solution for Cyber Threats

Christopher Febrian Nugraha / 18221115 (Author)

Program Studi Sistem dan Teknologi Informasi

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

cfnugraha823@gmail.com

Abstract—In a rapidly growing digital era such as now, one

must have a digital identity that works exactly like real-life

identity. However, due to its fairly new nature, digital identities

are vulnerable to theft and leaks caused by faulty system or even

an adversary. This paper proposes a novel and secure digital

identity protection system to combat the escalating challenges

posed by such cyber threats. The system leverages blockchain

technology to establish a secure and tamper-proof database for

storing user identities. To guarantee data security principles such

as confidentiality, integrity, authenticity, and non-repudiation of

these stored identities, the system incorporates a combination of

robust cryptographic algorithms. Elliptic Curve Integrated

Encryption Scheme (ECIES) safeguards the privacy of identities

through secure data encryption. Edwards-curve Digital Signature

Algorithm (EdDSA) then offers a state-of-the-art mechanism for

generating digital signatures, ensuring data integrity and non-

repudiation. Finally, the Keccak (SHA-3 precursor) hashing

function strengthens the system's security by providing a unique

and cryptographically secure message digest for data

authentication. An analysis is conducted to explore the system’s

suitability and effectivity for the proposed application. The

findings from this study can contribute significantly to the ongoing

efforts of creating a secure digital identity management solution.

Keywords— Blockchain, Digital Identity, ECIES, EdDSA,

Keccak Hashing Function)

I. INTRODUCTION

Nowadays, nearly every aspect of our daily lives is
digitalized and integrated with many services in order to achieve
what we believe as efficient processing. One of such aspect is
our own identity. Identity is integral to a functioning society and
economy. It is a proper way to identify ourselves and our
possessions, eventually enabling us to create thriving, complex
civilizations. At its most basic level, identity is a collection of
claims about a person, place or thing. For people, this usually
consists of first and last name, date of birth, nationality, and
possibly ownership claims of material possessions such as house
certificate, wallet, driving license, etc. [1].

By migrating and creating another identity to define
ourselves in the digital landscape, we are faced with many
problems and insecurities such as system leaks, data loss, and
especially cyber threats. Even when these problems are being
tackled by developments in data security systems, current digital

identities are very vulnerable to such problems and existing
systems are not well developed yet to serve as a fully robust and
secure platform for digital identity protection [2].

However, there is an idea about how digital identity can be
managed and protected. A few paper such as [3] and [4] describe
the implications of digital identity in a decentralized
environment. Both emphasizes the idea of “self-sovereign
identity” (SSI), a model in which users own all the rights over
their digital identity. In this model, users have control over what
happens with their identity, as only they can share it with
whoever they want to. In addition to these, the self-sovereign
identity model supports the transparency of algorithms and
systems, so that everyone can see how they work and have trust
in the framework. This concept is very closely linked with
blockchain’s distributed ledger paradigm.

If a digital identity protection system is developed based on
SSI, it is best to have blockchain as its foundation technology.
When using blockchain-based technology, SSI must be coupled
with robust cryptographic algorithms and hash functions to
ensure data security and immutability. Among the best of these
algorithms and functions are ECIES, EdDSA, and Keccak
function.

This paper aims to discuss a possible solution to digital
identity protection using blockchain-based database and secured
by using ECIES, EdDSA, and Keccak. By distributing user
identities on a blockchain across a decentralized network, the
data are made immutable to prevent any unauthorized tampering
to every data in the databases. ECIES is used to provide a secure
encryption and decryption of user identities, which are then
given digital signatures using EdDSA and Keccak. By using this
approach, digital identity protection and management provided
by the system is expected to ensure the confidentiality, integrity,
and authenticity of user identities while upholding non-
repudiation and availability of distributed databases.

This analysis contributes to finding a solution to cyber
threats against digital identities which also provides a foundation
for future usages of ECC-based algorithms and Keccak-like hash
functions in cybersecurity.

Makalah II4031 Kriptografi dan Koding, Semester II Tahun 2023/2024

II. LITERATURE REVIEW

A. Blockchain

According to [5], a blockchain is a continuously expanding

collection of data blocks linked together to form a long chain.

This network of connected data blocks represents a distributed

ledger that is disseminated over a peer-to-peer network. This

distributed ledger contains a collection of digital data that are

synced, replicated, distributed, and shared through a peer-to-

peer network.

In practice, blockchains will use cryptographic algorithms

and a hash function to secure the data inside every block before

getting added to the blockchain. Other technologies may

include the usage of Merkle-Patricia Trie for a more efficient

data integrity verification and changes, consensus algorithms

used for determining how people can validate a block before

appending, and smart contracts for automatically executing a

certain program after conditions in a block is fulfilled. An

instance of a blockchain scheme is illustrated in Figure 1.

Fig. 1. Blockchain Scheme. [5]

The blockchain is initiated using a Genesis Block which

contains the first recorded data. To append a block at the end of

the blockchain, the previous block’s hash digest is placed inside

the block’s header along with other important data, such as

current block hash digest and nonce. For the sake of simplicity,

this implementation will not use consensus algorithms and will

simply use pseudo-randomized nonce. The data inside each

block will contain a digital identity of different people (refer to

Figure 2).

Fig. 2. Appending a Block to Blockchain.

The blockchain will then be distributed among several

databases inside a closed decentralized network (refer to Figure

3). This process can be automated and improved by using Raft

consensus system [6], however for the sake of simplicity, the

distributed databases will be updated at the same time. By doing

so, the system’s distribution can be disrupted with various

attacks, but on a small scale, this method renders no big issue.

Fig. 3. Distributed Databases on a Decentralized Network. [7]

To monitor the state of current blockchain and user

identities, we will use a Merkle-Patricia Trie to ensure its

integrity and to ease any possible changes to the blockchain. A

Merkle Tree is a tree of hash digests repeatedly hashed together

to get a root digest which will be placed in every block header.

By mixing it with PATRICIA (Practical Algorithm To Retrieve

Information Coded In Alphanumeric) principle, we can achieve

efficiency in data integrity verification. A trie is a data structure

that is used to retrieve a string value by traversing down a

branch of nodes that store associated references (keys) that

together lead to the end value that can be returned.

Fig. 4. Merkle-Patricia Trie. [8]

Such implementation of blockchain technology already has

a wide range of applications, such as:

Makalah II4031 Kriptografi dan Koding, Semester II Tahun 2023/2024

• Financial Transactions

Blockchains can facilitate secure and efficient money

transfers through cryptocurrencies, while reducing

administration fees and paperwork.

• Smart Contracts

As mentioned before, blockchains can automate the

execution of a program written inside a block on the

blockchain. These have many benefits compared to

traditional contracts, which include no third-party

involvement while also efficient in both time and cost.

• Voting Systems

The global voting systems can be revolutionized and

improved using blockchains due to its decentralized and

immutable nature. The usage of blockchain in voting

systems will reduce frauds by percentage and increasing

voter confidence.

• Digital Identity Management

As the main reason of this paper, it is clear that by using

blockchains, any digital identity protection and

management systems can ensure data transparency,

security, and giving users more control over their own data.

B. Elliptic Curve Cryptography (ECC) based Algorithms

An elliptic curve is a mathematical construct defined over a

field and the points in such curve forms an abelian group. It has

several unique characteristics that can be used in cryptography

if the field it was defined on is a finite field. There is also

ECDLP (elliptic curve discrete logarithm problem) as an

intrinsic factor of elliptic curve which all ECC-based

algorithms depend on. Let there be points P and Q on the elliptic

curve such that 𝑘𝑃 = 𝑄 where k is a scalar. We can define k as

the discrete logarithm of Q in base P and when one tries to

obtain k by knowing P and Q, it will be significantly harder than

knowing k and trying to find one of the points [9].

In elliptic curves, point multiplication is achieved through

two methods, namely point addition and point doubling. Point

addition (refer to Figure 5) is a method on obtaining a new point

on the curve by pulling a line through two input points and

determining the intersection of said line with the curve. The

point at such intersection is the negative of the desired point. To

get the counterpart of a point, said point will be projected

symmetrically against the x-axis. If a point is added to its

negative counterpart, the result would be the point O, defined

as a point at infinity.

Fig. 5. Point Addition on Elliptic Curves. (a) Point Addition of

Two Different Points. (b) Point Addition of a Point and Its

Negative Counterpart. [9]

If a point on the elliptic curve is added to itself, it is called

point doubling. Point doubling works similarly with point

addition, differs only on how the line is drawn. Since there are

only one point of interest in the curve, the resulting point is

obtained by pulling a line tangent to the curve at that point. The

intersection on said line with the curve results in the negative

counterpart of the desired point. However, if the input point has

y-coordinate of 0, then the resulting point is the point O, located

at infinity (refer to Figure 6).

Fig. 6. Point Doubling on Elliptic Curves. (a) Point Doubling

if Y-Coordinate is non zero. (b) Point Doubling if Y-

Coordinate is zero. [9]

To achieve a cryptographically functional elliptic curve, the

curve must be defined over a finite field of a prime number. By

using the properties of a finite field, point multiplication on the

curve can be done relatively quicker while retaining ECDLP.

The resulting algorithms are created specifically for many

specialized purposes as shown in Figure 7.

Makalah II4031 Kriptografi dan Koding, Semester II Tahun 2023/2024

Fig. 7. Protocols Based on ECC. [10]

ECIES is chosen for its robustness compared to other

versions of ECC based cryptosystems. EdDSA (Edwards Curve

Digital Signature Algorithm) is better in nature with ECDSA,

since it is based on a different type of elliptical curve (refer to

Figure 8) and using a different type of signature called the

Schnorr’s Signature [11]. According to [12], an Edwards curve

is a particular form of an elliptic curve that leads to fast, unified,

and complete addition formulas. Using points along an inverted

or twisted Edwards curve (refer to Figure 9) yields the fastest

formulas for adding points on such a curve. This further

translates into faster cryptographic operations when using this

curve compared to normal elliptic curves.

Fig. 8. Forms of Elliptical Curves. (a) Edwards Curve. (b)

Weierstrass Curve. (c) Jacobi-quartic Curve. (d) Hessian

Curve. [11]

Fig. 9. Point Addition on Twisted Edwards Curve. [13]

By using these algorithms, the blockchain-based database

will endure cyberattacks better than using other cryptosystems,

such as RSA [14]. It is much faster for larger data sets and

provides better security even when using smaller key sizes.

C. Keccak Hash Function

Keccak hash function was crowned as the winner of NIST

Hash Function Competition in 2012, making it the basis of a

new hash standard called SHA-3. The reasoning behind said

competition is that NIST wanted to find a hash function

dissimilar from older SHAs, such as SHA-0 and SHA-1 which

are proven to be vulnerable to attacks and are deprecated. As

SHA-2 are also similar in construction with its precursors (even

with no proven successful breaches), NIST was wary about the

risks by having no alternative to SHA-2 which has no similar

weaknesses compared with previous standards.

Keccak hash function is constructed by using a sponge-like

architecture (refer to Figure 10), unlike SHA-2 and its

precursors that has similar workflow. However, Keccak also

has its own weaknesses, as revealed on tests against SHA-3.

The sponge-like construction refers to its function which

resembles a sponge by “absorbing” data to the function and then

“squeezes” out the results.

Fig. 10. Sponge Architecture in Keccak Hash Function. [15]

Every time n-bit part of the message gets “absorbed” to the

function state using XOR operation, it undergoes 24 rounds of

processing using the f function. The f function is comprised of

five different components that works sequentially, called θ

(Theta), ρ (Rho), π (Pi), χ (Chi), and ι (Iota) respectively. The

results of a previous f function processing will become the state

of the function, accepting new n-bit message part to process in

the next 24 rounds and the process repeats until there are no

more message to “absorb”. It is noteworthy that not every part

of the state block will accept new message parts. This increases

the quality of resulting message digest and preventing collisions

among existing digests.

Based on [16], the five subprocesses are explained as the

following:

• θ component:

Consists of a parity computation, a rotation of one position,

and a bitwise XOR. This is depicted and formulated in more

detail in Equation 1.

𝐶[𝑥] = 𝐴[𝑥, 0] ⊕ 𝐴[𝑥, 1] … ⊕ 𝐴[𝑥, 4] 𝑓𝑜𝑟 0 ≤ 𝑥 ≤ 4
𝐷[𝑥] = 𝐶[𝑥 − 1] ⊕ 𝑅𝑂𝑇(𝐶[𝑥 + 1], 1) 𝑓𝑜𝑟 0 ≤ 𝑥 ≤ 4

𝐴[𝑥, 𝑦] = 𝐴[𝑥, 𝑦] ⊕ 𝐷[𝑥] 𝑓𝑜𝑟 0 ≤ 𝑥, 𝑦 ≤ 4 ……… (1)

• ρ component:

Doing a rotation by an offset that depends on the word

position using a different triangular number 0, 1, 3, 6, 10,

15, etc. This is denoted in Equation 2.

𝐴[𝑥, 𝑦] = 𝑅𝑂𝑇(𝐴[𝑥, 𝑦], 𝑟[𝑥, 𝑦]) 𝑓𝑜𝑟 0 ≤ 𝑥, 𝑦 ≤ 4…… (2)

Makalah II4031 Kriptografi dan Koding, Semester II Tahun 2023/2024

• π component:

This component is implemented to modify the Keccak

columns and lanes position using permutation. This is

denoted in Equation 3.

𝐵[𝑦, 2𝑥 + 3𝑦] = 𝐴[𝑥, 𝑦] 0 ≤ 𝑥, 𝑦 ≤ 4 ………………. (3)

• χ component:

It consists of five rows of five lanes and implements 25

XOR, 25 AND, and 25 NOT of 64-bit logic gates. This is

depicted in Equation 4.

𝐴[𝑥, 𝑦] = 𝐵[𝑥, 𝑦] ⊕ ((𝑁𝑂𝑇 𝐵[𝑥 + 1, 𝑦]) 𝐴𝑁𝐷(𝐵[𝑥 +
2, 𝑦])) 𝑓𝑜𝑟 0 ≤ 𝑥, 𝑦 ≤ 4 ……………………………… (4)

• ι component:

The final component performs XOR operation between the

first lane and the round constant value. This is denoted in

Equation 5.

𝐴[0, 0] = 𝐴[0, 0] ⊕ 𝑅𝐶 ……………………………… (5)

After the “absorbing” phase is completed, the function

enters the “squeezing” phase in which the result is taken out

from the function state. If the digest taken is not yet as long as

the desired length, the f function will be applied to the state and

the current state will be appended to said digest. This may be

exhausting computational resources, but it will decrease the

chances of a collision even further.

III. DESIGN AND IMPLEMENTATION

When creating a system for digital identity protection, the
first step is to implement ECIES, EdDSA, and Keccak Hash
before using all of it in the blockchain. Each part of the whole
system will be designed and implemented according to current
paper needs hence these will be simplified version from what
actually being used in real world.

Referring to Figure 11, at first user will access the system
through a PC or laptop. User will then decide to generate new
keys or to use existing keys. The keys will be used to process the
digital identity that user has entered. EdDSA keys will be used
to digitally sign the data and includes the signage to block
processing. In this process, the block under construction will
place the signage with the data, encrypts the data block using
ECIES, and then defining its headers (such as previous block
digest, merkle root, timestamp, etc.). After going through the
consensus algorithm and mined by a miner, the block’s last
header part is filled (nonce and current block digest). The block
is then appended to the blockchain stored inside the device’s
local database. The database, being distributed among its peer in
a decentralized network, will resolve whether its blockchain is
the longest and the most agreeable one. If it is, other peers in the
network will copy the blockchain and distribute it.

Fig. 11. Digital Identity Protection System (DIPS) Scheme.

 For EdDSA, the signing process involves generating two
parts of signature, namely sign A and sign B (refer to Figure 12).
Creating the signature will require the usage of Keccak Hash
Function as well as the Edwards Curve formula and initial
parameters. After signing, the data can be verified using the
creation of two test proofs that will be compared. If any of the
original data is changed or the data owner repudiates, the proofs
will not be equal.

Fig. 12. EdDSA in DIPS Operational Scheme.

 By using the scheme in Figure 12, an EdDSA component for
DIPS can be implemented using Python language. The
following is a mock test of said implementation along with its
generated data and processing time.

Makalah II4031 Kriptografi dan Koding, Semester II Tahun 2023/2024

Fig. 13. EdDSA Mock Test.

 For ECIES, the encryption process starts after digital
signature for the data is created. It involves generating a key pair,
namely a random key and a public key as well as a private key
for encryption (refer to Figure 14). The key generation will be
using normal Elliptic Curve formula and initial parameters. The
encryption and decryption process will be using AES on EAX
mode and the nonce in the block header. On non-blockchain
usage (such as normal message exchange), the keys can be
derived as two parts, one being used in actual encryption-
decryption process, while the other is used for getting a HMAC
to authenticate the message contents.

Fig. 14. ECIES in DIPS Operational Scheme.

 By using the scheme in Figure 14, an ECIES component for
DIPS can be implemented using Python language. The
following is a mock test of said implementation along with its
generated data and processing time.

Fig. 15. ECIES Mock Test.

 For Keccak Hash Function, the process is exactly as
mentioned in Section II. The “absorbing” phase will continue to
“absorb” n-bit parts of the message until there is none left. The
“squeezing” phase will continue to “squeeze” out parts of the
digest until it reaches the desired digest length. In between
“absorbing” and “squeezing” messages or digests, it will process
the current function state (and newly “absorbed” message parts)
using an f function for 24 rounds. The f function will be
comprised of five different stages, each jumbling the input data
in formulated and calculated ways (refer to Figure 16).

Fig. 16. Keccak in DIPS Operational Scheme.

 By using the scheme in Figure 16, a Keccak component for
DIPS can be implemented using Python language. The
following is a mock test of said implementation along with its
generated data and processing time.

Makalah II4031 Kriptografi dan Koding, Semester II Tahun 2023/2024

Fig. 17. Keccak Mock Test.

 Finally, the blockchain will be generated from a genesis
block that contains the first data (usually a dummy data). The
block that appears afterwards must be digitally signed,
encrypted, and mined by a miner before being appended to the
blockchain. This chain will then be distributed among peers on
a decentralized network. As mentioned before, it is ideal to use
Raft consensus algorithm for database management, however
for the sake of simplicity, the blockchain in this paper will only
use simple error resolving methods.

IV. SIMULATION AND ANALYSIS

The simulation starts with user opening the application.

User will see the client side of blockchain system in order to

simulate a new user creating a wallet (identity) before using the

blockchain. There will be a button to generate a new wallet

which in turn will generate new pairs of keys for the user (refer

to Figure 18).

Fig. 18. DIPS Blockchain Client Side.

If user inputs a public and private key, the system will use

that as EdDSA keys (ECIES keys can be generated multiple

times). User can proceed to input his/her data into the system

and process it to the blockchain. The system will automatically

use EdDSA to sign the data and ECIES to encrypt it after the

block has been mined. As shown in Figure 19, the user can also

play the role of a miner which mines new block that are

generated across the network.

Fig. 19. DIPS Blockchain Miner Side.

The user can now help other users validate their data. This

is the part of the system that makes everyone can see who sent

the data but not the data itself. However, anyone can help to

secure the data by using their own private key and the owner’s

public key in order to create a safe and trusting network of

identities. A user may change his/her data, but it will need a

consent from the miner that validated the block.

While working with this system, a timer is prepared to

record the time elapsed for data inputs of size 10, 100, and 1000

(through console for looping). The data shows that there are

little to no significant increase in time and cost taken to process

data on an even larger scale. The following is the data gathered

from tests and categorized based on the components used in the

system. In order to get a greater grasp of each component,

Keccak will not be used in EdDSA and replaced by Python

built-in hash library.

TABLE I

Test Results

Subsystems Time Elapsed for Each Data Sizes

10 100 1000

EdDSA 0.261 s 1.724 s 4.632 s

ECIES 0.075 s 1.829 s 3.908 s

Keccak 1.103 s 15.074 s 91.031 s

From the results, it can be determined that Keccak is

significantly slower than other subsystems. This can be

answered by the implementation of full repeated 24 rounds of

Keccak function, whereas SHA-256 used from Python hash

library on ECIES and EdDSA takes far less computation.

However, the security levels might be compromised in the

future if SHA-256 is used for this system. Overall, it can be

ruled out that ECIES and EdDSA provides a great safety level

at small time and cost even on large scale data processing.

Meanwhile, Keccak Hash Function might not be the best

solution for the system as it has quite large processing time

when compared with other hash standards. Keccak might

provide an extra layer of security, but the time and cost it needs

exceeded the acceptable threshold as mentioned by Devi [3].

Other test should be conducted in the future in order to get

a more comprehensive view about the usage of each

subcomponent. There could also be other solutions to the same

problem that uses different technologies and can be compared

with one another in order to determine the best possible solution

to solve digital identity management and protection.

Makalah II4031 Kriptografi dan Koding, Semester II Tahun 2023/2024

V. CONCLUSION

Digital identity protection is paramount in today's

cybersecurity landscape. A system comprised of blockchain

technology, ECIES, EdDSA, and Keccak could safeguard

digital identities. While the combination offers promising

security features, a comprehensive analysis is crucial to assess

its real-world applicability.

The analysis conducted in this paper is limited.

Nevertheless, it can give a general idea about which underlying

technologies are fitting for a blockchain based solution to this

problem. The blockchain technology itself does not being tested

as the scope is being limited to a small peer-to-peer network of

databases. Mathematically, EdDSA and ECIES are both

superior when compared to other algorithms such as ECDSA

and EC-ElGamal respectively.

The test shows that EdDSA and ECIES are proven to be fast,

robust, and capable of handling large amounts of data.

Meanwhile, Keccak Hash Function is theoretically better and

more resistant to attacks than other SHAs. This does not prove

to be true in the test, as the Keccak Hash used in the system uses

large amount of computational time and resources on a level

that overthrows its better security level.

Although an extra layer of protection is very much needed

in the problem focused, a slow hashing function will slow down

a significant percentage of this DIPS system. Therefore, Keccak

Hash Function can be considered not ready or replaceable with

other SHA functions that are quicker and easier to implement.

SOURCE CODE

Here is the link to a GitHub repository about the
implementation of digital identity protection using blockchain-
based database, ECIES, EdDSA, and Keccak Hash:

https://github.com/toper664/blockchain-with-ecies-eddsa-
keccak

VIDEO LINK AT YOUTUBE

Here is the link to a YouTube video about the analysis and
implementation of Digital Identity Protection:

https://youtu.be/-qQKK5Iwauu

REFERENCES

[1] L. J. Camp, “Digital identity,” IEEE Technology and

Society Magazine, vol. 23, no. 3, pp. 34–41, Feb. 2004,

doi: 10.1109/MTAS.2004.1337889.
[2] “Digital Identity On the Threshold of a Digital Identity

Revolution,” 2018.

[3] S. Devi, S. Kotian, M. Kumavat, and D. Patel, “Digital

Identity Management System Using Blockchain.”

[Online]. Available: https://ssrn.com/abstract=4127356

[4] A. Giannopoulou, “Digital Identity Infrastructures: a

Critical Approach of Self-Sovereign Identity,” Digital

Society, vol. 2, no. 2, p. 18, Aug. 2023, doi:

10.1007/s44206-023-00049-z.

[5] M. Krichen, M. Ammi, A. Mihoub, and M. Almutiq,

“Blockchain for Modern Applications: A Survey,”

Sensors, vol. 22, no. 14, p. 5274, Jul. 2022, doi:

10.3390/s22145274.

[6] D. Ongaro and J. Ousterhout, “In Search of an

Understandable Consensus Algorithm (Extended

Version).”

[7] A. C. Careja and N. Tapus, “Digital Identity Using

Blockchain Technology,” in Procedia Computer

Science, Elsevier B.V., 2023, pp. 1074–1082. doi:

10.1016/j.procs.2023.08.090.

[8] L. Zhang, “Ethereum Merkle Patricia Trie Explained.”

[9] A. Ms and A. C. In, “Elliptic Curve Cryptography-An

Implementation Tutorial Elliptic Curve Cryptography

An Implementation Guide.”

[10] H. Alrimeih, “Fast and Flexible Hardware Support for

Elliptic Curve Cryptography over Multiple Standard

Prime Finite Fields,” 2012.

[11] J. Guruprakash and S. Koppu, “An Empirical Study to

Demonstrate that EdDSA can be used as a Performance

Improvement Alternative to ECDSA in Blockchain and

IoT,” Informatica (Slovenia), vol. 46, no. 2, pp. 277–

290, Jun. 2022, doi: 10.31449/inf.v46i2.3807.

[12] F. Morain, “Edwards curves and CM curves,” Apr.

2009, [Online]. Available:

http://arxiv.org/abs/0904.2243

[13] M. Ashraf and B. Kırlar, “INTERNATIONAL

JOURNAL OF INFORMATION SECURITY

SCIENCE On the Alternate Models of Elliptic Curves.”

[14] J. Bao, “Research on the Security of Elliptic Curve

Cryptography,” 2022.

[15] S. Sharma, . L., and S. Khanum, “Performance analysis

of SHA 2 and SHA 3,” SSRN Electronic Journal, 2022,

doi: 10.2139/ssrn.4068861.

[16] H. Mestiri, I. Barraj, and M. Machhout, “A High-Speed

KECCAK Architecture Resistant to Fault Attacks,” in

2020 32nd International Conference on

Microelectronics (ICM), IEEE, Dec. 2020, pp. 1–4. doi:

10.1109/ICM50269.2020.9331792.

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis ini

adalah tulisan saya sendiri, bukan saduran, atau terjemahan dari

makalah orang lain, dan bukan plagiasi.

Bandung, 12 Juni 2024

Christopher Febrian Nugraha / 18221115

https://github.com/toper664/blockchain-with-ecies-eddsa-keccak
https://github.com/toper664/blockchain-with-ecies-eddsa-keccak
https://youtu.be/-qQKK5Iwauu

